Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Heptane-1,7-diaminium dinitrate

Charmaine Arderne

University of Johannesburg, Department of Chemistry, PO Box 524, Auckland Park, Johannesburg 2006, South Africa Correspondence e-mail: carderne@uj.ac.za

Received 20 September 2011; accepted 17 October 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.124; data-to-parameter ratio = 14.9.

In the title molecular salt, $C_7H_{20}N_2^{2^+}\cdot 2NO_3^-$, the crystal structure exhibits an unusual back-to-back paired double-stacked packing arrangement culminating in an overall double zigzag pattern of the dications. The nitrate anions form a ring around one pair of double-stacked dications. An intricate three-dimensional $N-H\cdots O$ and $N-H\cdots (O,O)$ hydrogenbonding network exists in the crystal structure.

Related literature

For related structural studies of *n*-alkyl-diammonium nitrate salts, see: van Blerk & Kruger (2009). For the Cambridge Structural Database, see: Allen (2002).

Experimental

Crystal data

 $\begin{array}{l} C_{7}H_{20}N_{2}^{2+}\cdot 2\text{NO}_{3}^{-} \\ M_{r} = 256.27 \\ \text{Monoclinic, } P2_{1}/n \\ a = 5.3236 \ (1) \\ \text{Å} \\ b = 16.8340 \ (4) \\ \text{Å} \\ c = 14.9845 \ (3) \\ \text{Å} \\ \beta = 96.500 \ (1)^{\circ} \end{array}$

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (AX-SCALE; Bruker, 2008) $T_{min} = 0.953, T_{max} = 0.966$ $V = 1334.24 (5) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 0.11 mm^{-1} T = 295 K 0.44 \times 0.35 \times 0.32 mm

16750 measured reflections 2343 independent reflections 1828 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.124$ S = 1.062343 reflections $\begin{array}{l} 157 \text{ parameters} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{\text{max}} = 0.29 \text{ e } \text{ Å}^{-3} \\ \Delta \rho_{\text{min}} = -0.18 \text{ e } \text{ Å}^{-3} \end{array}$

Table 1Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1C \cdot \cdot \cdot O4^{i}$	0.89	2.16	2.956 (2)	149
$N1-H1C\cdots O6^{ii}$	0.89	2.62	3.129 (2)	118
$N1 - H1D \cdot \cdot \cdot O1^{ii}$	0.89	2.09	2.951 (2)	161
$N1 - H1D \cdots O3^{ii}$	0.89	2.40	3.035 (2)	129
$N1 - H1E \cdot \cdot \cdot O1^{i}$	0.89	2.04	2.871 (2)	155
$N1 - H1E \cdot \cdot \cdot O2^{i}$	0.89	2.43	3.208 (3)	147
$N2-H2C\cdots O2^{iii}$	0.89	2.26	3.142 (2)	172
$N2-H2C \cdot \cdot \cdot O3^{iii}$	0.89	2.26	2.911 (2)	130
$N2-H2D\cdots O4^{iv}$	0.89	2.07	2.901 (2)	155
$N2-H2E\cdots O4^{v}$	0.89	2.44	3.0064 (19)	122
$N2-H2E\cdots O6^{v}$	0.89	2.08	2.967 (2)	171

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2};$ (ii) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2};$ (iii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2};$ (iv) -x + 1, -y + 1, -z + 2; (v) x + 1, y, z.

Data collection: *SMART-NT* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010) and *PLATON* (Spek, 2009).

The author acknowledges the National Research Foundation Thuthuka Programme (grant No. GUN 66314) and the University of Johannesburg for funding for this study. The University of the Witwatersrand is thanked for the use of their facilities and the use of the diffractometer in the Jan Boeyens Structural Chemistry Laboratory.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2262).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Blerk, C. van & Kruger, G. J. (2009). Acta Cryst. E65, o1008.
- Bruker (1999). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2008). AX-SCALE and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2011). E67, o3007 [doi:10.1107/S1600536811042917]

Heptane-1,7-diaminium dinitrate

C. Arderne

Comment

The crystal structure of the title compound (I) adds to our current ongoing investigations of long-chained diammonium inorganic mineral acid salts (van Blerk & Kruger, 2009). Colourless crystals of heptane-1,7-diammonium dinitrate were obtained and analyzed by single-crystal X-ray diffraction techniques. This material forms part of our structural chemistry study of the inorganic mineral acid salts of the *n*-alkyldiamines. A search of the Cambridge Structural Database (Version 5.32, Allen, 2002) revealed that this compound had not previously been determined.

The asymmetric unit of compound (I) contains one diammonium dication and two nitrate anions with all atoms occupying general positions. The hydrocarbon chain is also fully extended with very slight deviations from planarity chain as is evident from the torsion angles along the hydrocarbon chain (tabulated in Table 1). The molecular structure of (I) is shown in Fig. 1.

Fig. 2 illustrates the packing arrangement of the title compound (I) viewed down the *a* axis. The diammonium cations pack back-to-back, in pairs in a double zig-zag pattern. Each dication pair is completely surrounded by a ring of nitrate anions. An extensive three-dimensional hydrogen-bonding network is also formed of N—H…O hydrogen bonds.

A close-up view of selected hydrogen bonding interactions can be viewed in Fig. 3. The three-dimensional hydrogen bonding network is built and linked through hydrogen bonding interactions between the ammonium groups of the dication and the nitrate anions. Clear evidence of bifurcated hydrogen bonding interactions can also be seen in this illustration. The hydrogen bond distances and angles for the title compound (I) can be found in Table 2.

Experimental

Compound (I) was prepared by adding heptane-1,7-diamine (0.50 g, 3.84 mmol) to 55% nitric acid (2 ml, 42.5 mmol, Merck) in a sample vial. The mixture was then refluxed at 363 K for 2 h. The solution was cooled at 2 K h⁻¹ to room temperature. Colourless crystals of heptane-1,7-diammonium dinitrate were collected and a suitable single-crystal was selected for the X-ray diffraction study.

Refinement

H atoms were geometrically positioned and refined in the riding-model approximation, with C—H = 0.97 Å, N—H = 0.89 Å, and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(N)$. For (I), the highest peak in the final difference map is 1.05 Å from O3 and the deepest hole is 0.87 Å from O3.

Figures

Fig. 1. Molecular structure of the title compound, with atomic numbering scheme and displacement ellipsoids drawn at the 50% probability level.

Fig. 2. Packing arrangement of the title compound viewed down the a axis. Selected hydrogen bonds are indicated by red dashed lines.

Fig. 3. Close-up view of the title compound clearly showing selected hydrogen-bonding interactions. Hydrogen bonds are indicated by green dashed lines.

F(000) = 552

 $\theta = 2.4 - 24.5^{\circ}$

 $\mu = 0.11 \text{ mm}^{-1}$

Block, colourless

 $0.44 \times 0.35 \times 0.32 \text{ mm}$

T = 295 K

 $D_{\rm x} = 1.276 {\rm ~Mg~m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 8072 reflections

Heptane-1,7-diaminium dinitrate

 $C_7H_{20}N_2^{2+}\cdot 2NO_3^{-}$ $M_r = 256.27$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 5.3236 (1) Å b = 16.8340 (4) Å c = 14.9845 (3) Å $\beta = 96.500 \ (1)^{\circ}$ $V = 1334.24 (5) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART CCD diffractometer	2343 independent reflections
Radiation source: fine-focus sealed tube	1828 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.032$
φ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: multi-scan (AX-SCALE; Bruker, 2008)	$h = -6 \rightarrow 6$
$T_{\min} = 0.953, T_{\max} = 0.966$	$k = -19 \rightarrow 19$

supplementary materials

7→17

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters constrained
$wR(F^2) = 0.124$	$w = 1/[\sigma^2(F_o^2) + (0.0558P)^2 + 0.3767P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{max} < 0.001$
2343 reflections	$\Delta \rho_{max} = 0.29 \text{ e} \text{ Å}^{-3}$
157 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Drimory atom site location, structure inversiont direct	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.027 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
C1	0.2521 (4)	0.71038 (12)	0.43729 (16)	0.0700 (6)
H1A	0.1900	0.6662	0.3994	0.084*
H1B	0.1282	0.7213	0.4784	0.084*
C2	0.4951 (4)	0.68708 (14)	0.48992 (15)	0.0703 (6)
H2A	0.5671	0.7331	0.5223	0.084*
H2B	0.6127	0.6703	0.4487	0.084*
C3	0.4660 (4)	0.62061 (13)	0.55650 (14)	0.0683 (6)
H3A	0.3515	0.6380	0.5986	0.082*
H3B	0.3899	0.5751	0.5243	0.082*
C4	0.7127 (4)	0.59522 (14)	0.60854 (15)	0.0724 (6)
H4A	0.8182	0.5710	0.5673	0.087*
H4B	0.8000	0.6420	0.6339	0.087*
C5	0.6812 (4)	0.53735 (13)	0.68327 (14)	0.0670 (5)
H5A	0.5906	0.4911	0.6580	0.080*
H5B	0.5781	0.5620	0.7249	0.080*

supplementary materials

C6	0.9287 (4)	0.50997 (13)	0.73523 (13)	0.0617 (5)
H6A	1.0223	0.4783	0.6962	0.074*
H6B	1.0306	0.5560	0.7543	0.074*
C7	0.8826 (3)	0.46172 (11)	0.81595 (13)	0.0571 (5)
H7A	0.7854	0.4931	0.8541	0.068*
H7B	0.7831	0.4153	0.7965	0.068*
N1	0.2774 (3)	0.78115 (9)	0.38028 (11)	0.0612 (4)
H1C	0.3176	0.8232	0.4150	0.092*
H1D	0.1315	0.7901	0.3466	0.092*
H1E	0.3983	0.7727	0.3449	0.092*
N2	1.1202 (3)	0.43572 (9)	0.86872 (10)	0.0563 (4)
H2C	1.1956	0.3994	0.8378	0.084*
H2D	1.0855	0.4148	0.9205	0.084*
H2E	1.2224	0.4773	0.8796	0.084*
N3	0.2584 (3)	0.77064 (11)	0.75577 (11)	0.0643 (5)
N4	0.3365 (3)	0.60428 (9)	0.97456 (10)	0.0524 (4)
01	0.2441 (3)	0.70920 (9)	0.80187 (11)	0.0828 (5)
O2	0.0960 (4)	0.82199 (13)	0.75256 (13)	0.1094 (7)
O3	0.4470 (3)	0.78063 (11)	0.71661 (13)	0.0983 (6)
O4	0.1024 (2)	0.59148 (8)	0.96594 (8)	0.0579 (4)
05	0.4312 (3)	0.65102 (10)	1.03157 (11)	0.0859 (5)
O6	0.4699 (3)	0.56836 (8)	0.92489 (11)	0.0731 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0538 (11)	0.0625 (12)	0.0923 (15)	-0.0014 (9)	0.0016 (10)	0.0079 (11)
C2	0.0556 (11)	0.0777 (14)	0.0755 (13)	-0.0033 (10)	-0.0012 (10)	0.0081 (11)
C3	0.0584 (12)	0.0721 (13)	0.0727 (13)	-0.0007 (10)	-0.0003 (10)	0.0041 (11)
C4	0.0593 (12)	0.0834 (15)	0.0729 (13)	-0.0023 (11)	0.0004 (10)	0.0120 (11)
C5	0.0561 (11)	0.0755 (13)	0.0683 (12)	-0.0021 (10)	0.0020 (9)	0.0050 (10)
C6	0.0528 (11)	0.0696 (12)	0.0624 (11)	-0.0009 (9)	0.0045 (9)	0.0033 (10)
C7	0.0504 (10)	0.0580 (11)	0.0631 (11)	0.0000 (8)	0.0078 (8)	-0.0033 (9)
N1	0.0513 (9)	0.0562 (9)	0.0743 (11)	0.0003 (7)	0.0001 (8)	-0.0044 (8)
N2	0.0582 (9)	0.0552 (9)	0.0548 (9)	0.0062 (7)	0.0033 (7)	-0.0041 (7)
N3	0.0607 (10)	0.0703 (11)	0.0601 (10)	-0.0032 (9)	-0.0014 (8)	0.0114 (8)
N4	0.0455 (9)	0.0497 (9)	0.0609 (9)	0.0030 (7)	0.0016 (7)	0.0092 (7)
01	0.0805 (11)	0.0728 (10)	0.0962 (11)	-0.0081 (8)	0.0145 (8)	0.0310 (9)
02	0.0942 (13)	0.1239 (15)	0.1122 (14)	0.0452 (12)	0.0216 (11)	0.0440 (12)
03	0.0797 (11)	0.1003 (13)	0.1192 (14)	-0.0011 (9)	0.0293 (10)	0.0406 (11)
04	0.0425 (7)	0.0639 (8)	0.0674 (8)	0.0010 (6)	0.0061 (6)	0.0046 (6)
05	0.0768 (11)	0.0803 (11)	0.0948 (11)	-0.0076 (8)	-0.0155 (9)	-0.0181 (9)
O6	0.0574 (8)	0.0696 (9)	0.0967 (11)	0.0094 (7)	0.0286 (8)	0.0016 (8)

Geometric parameters (Å, °)

C1—N1	1.481 (3)	С6—Н6А	0.9700
C1—C2	1.489 (3)	С6—Н6В	0.9700
C1—H1A	0.9700	C7—N2	1.480 (2)

C1—H1B	0.9700	С7—Н7А	0.9700
C2—C3	1.519 (3)	С7—Н7В	0.9700
C2—H2A	0.9700	N1—H1C	0.8900
C2—H2B	0.9700	N1—H1D	0.8900
C3—C4	1.511 (3)	N1—H1E	0.8900
С3—НЗА	0.9700	N2—H2C	0.8900
С3—Н3В	0.9700	N2—H2D	0.8900
C4—C5	1.508 (3)	N2—H2E	0.8900
C4—H4A	0.9700	N3—O2	1.220 (2)
C4—H4B	0.9700	N3—O3	1.230 (2)
C5—C6	1.524 (3)	N3—O1	1.251 (2)
C5—H5A	0.9700	N4—O5	1.227 (2)
С5—Н5В	0.9700	N4—O6	1.2424 (19)
C6—C7	1.500 (3)	N4—O4	1.2570 (18)
N1—C1—C2	112.78 (17)	C7—C6—C5	111.39 (16)
N1—C1—H1A	109.0	С7—С6—Н6А	109.4
C2—C1—H1A	109.0	С5—С6—Н6А	109.4
N1—C1—H1B	109.0	С7—С6—Н6В	109.4
C2—C1—H1B	109.0	С5—С6—Н6В	109.4
H1A—C1—H1B	107.8	H6A—C6—H6B	108.0
C1—C2—C3	113.25 (18)	N2—C7—C6	112.51 (15)
С1—С2—Н2А	108.9	N2—C7—H7A	109.1
С3—С2—Н2А	108.9	С6—С7—Н7А	109.1
С1—С2—Н2В	108.9	N2—C7—H7B	109.1
С3—С2—Н2В	108.9	С6—С7—Н7В	109.1
H2A—C2—H2B	107.7	H7A—C7—H7B	107.8
C4—C3—C2	113.58 (17)	C1—N1—H1C	109.5
С4—С3—НЗА	108.9	C1—N1—H1D	109.5
С2—С3—НЗА	108.9	H1C—N1—H1D	109.5
С4—С3—Н3В	108.9	C1—N1—H1E	109.5
С2—С3—Н3В	108.9	H1C—N1—H1E	109.5
НЗА—СЗ—НЗВ	107.7	H1D—N1—H1E	109.5
C5—C4—C3	113.76 (17)	C7—N2—H2C	109.5
С5—С4—Н4А	108.8	C7—N2—H2D	109.5
С3—С4—Н4А	108.8	H2C—N2—H2D	109.5
C5—C4—H4B	108.8	C7—N2—H2E	109.5
С3—С4—Н4В	108.8	H2C—N2—H2E	109.5
H4A—C4—H4B	107.7	H2D—N2—H2E	109.5
C4—C5—C6	114.37 (17)	O2—N3—O3	119.83 (18)
С4—С5—Н5А	108.7	O2—N3—O1	121.37 (19)
С6—С5—Н5А	108.7	O3—N3—O1	118.72 (18)
С4—С5—Н5В	108.7	O5—N4—O6	120.76 (16)
С6—С5—Н5В	108.7	O5—N4—O4	120.40 (16)
Н5А—С5—Н5В	107.6	O6—N4—O4	118.84 (16)
N1—C1—C2—C3	173.40 (19)	C3—C4—C5—C6	178.89 (19)
C1—C2—C3—C4	178.6 (2)	C4—C5—C6—C7	172.16 (18)
C2—C3—C4—C5	172.1 (2)	C5—C6—C7—N2	-178.84 (16)
	· · ·		. ,

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1C···O4 ⁱ	0.89	2.16	2.956 (2)	149
N1—H1C···O6 ⁱⁱ	0.89	2.62	3.129 (2)	118
N1—H1D····O1 ⁱⁱ	0.89	2.09	2.951 (2)	161
N1—H1D····O3 ⁱⁱ	0.89	2.40	3.035 (2)	129
N1—H1E···O1 ⁱ	0.89	2.04	2.871 (2)	155
N1—H1E····O2 ⁱ	0.89	2.43	3.208 (3)	147
N2—H2C···O2 ⁱⁱⁱ	0.89	2.26	3.142 (2)	172
N2—H2C···O3 ⁱⁱⁱ	0.89	2.26	2.911 (2)	130
N2—H2D····O4 ^{iv}	0.89	2.07	2.901 (2)	155
N2—H2E···O4 ^v	0.89	2.44	3.0064 (19)	122
N2—H2E···O6 ^v	0.89	2.08	2.967 (2)	171

Symmetry codes: (i) x+1/2, -y+3/2, z-1/2; (ii) x-1/2, -y+3/2, z-1/2; (iii) -x+3/2, y-1/2, -z+3/2; (iv) -x+1, -y+1, -z+2; (v) x+1, y, z.

Fig. 1

